

An empirical methodology for rating building thermal mass as energy storage system

Chrysa Politi

Email: chrysapol@metal.ntua.gr

A. Peppas, K. Kollias, M. Taxiarchou, D. Mantelis, L. Karalis

Laboratory of Metallurgy School of Mining and Metallurgical Engineering, National Technical University of Athens, Greece

Introduction (1)

- 55% of world's population in 2018 resided in urban areas and it is projected to reach 68% by 2050.
- According to Revised Renewable Energy Directive (2018/2001/EU) Renewable energy target for the EU for 2030 is set to reach at least 32%.
- Storage of renewable energy in various stable forms has become a high priority in the research agenda.

Introduction (2)

- Thermal mass maintains thermal comfort, stabilizes heating/cooling loads and mitigates peak power demand.
- Integration of prediction algorithms increases
 computational costs and the complexity of the systems.

Necessity of an **empirical methodology** to **define** a **real building case** by utilizing **minimum input** parameters and **no uncertain factors**.

The Concept (1)

Residential space heating while respecting thermal comfort, offers the **highest potential** for **Demand-Side Flexibility (DSF)**.

DSF by turning up its Heating, Ventilation, and Air Conditioning (**HVAC**) system at night and turn down in the morning, or vice versa.

Optimal performance of space heating leads to :

- Increased system reliability
 - ✓ reduced operating costs
 - ✓ low system emissions

Moreover, it activates the thermal mass of the building.

The Concept (2)

Building's thermal mass is a solution to store thermal energy, stabilize heating and cooling loads and mitigate peak power demand.

Efficient and flexible way to rate the thermal storage capability by using:

- room temperature measurements
- basic information of the building construction along with its HVAC equipment

SABINA:

SmArt BI-directional

EU Research Project: The concept

EU Research Project: The concept

SABINA: SmArt BI-directional multi eNergy gAteway

Model structure

Variable-Base Degree Days (VBDD)

The **weather** has a **significant impact** on **thermal performance** of buildings, as well as on **renewables**.

Degree-day methodology is a **simple** and **proper** method for **energy analysis** of buildings.

VBDD method contributes to the exclusion of the **location** and the **climate conditions**.

Heating Degree Days (HDD) [°C/h]

$$HDD_h(t_{bal}) = \frac{\sum_{hours} (T_{bal} - T_o)}{24h}$$

Balance-Point Temperature [°C]
 $T_{bal} = Setpoint - \frac{Q_{occ} + Q_{lit} + Q_{equ} + Q_{sol}}{K_{tot}}$

Empirical factors for thermal mass rating

The set of empirical factors aims to rank the capability of building's thermal mass to store thermal energy in relation with its installed HVAC equipment.

Assesses the electrical energy consumption required for reaching the selected setpoints. $\int_{a}^{setpoint} G_{HVAC}(t) dt$

$$ERR = \frac{\int_{start} C_{HVAC}(t)dt}{A_{gnd}}$$

Equipment Response Rate [kWh/m²] Building Ranking Coefficient [°C·kWh/h·m²] BRC = $\frac{CHR}{ERR}$

> Correlates the building thermal capabilities with the installed heating infrastructure.

The demo site (1) : Building

Building main characteristics							
Building envelope materials	Concrete with double brick walls and metallic roof insulated with 25.4mm polyurethane						
Energy consumption	133 kWh/m ²						
HVAC systems	Heat Pump-Air Handling Unit 01(32kW load) Ventilation Refrigerant Flow Units(25kW load)						

The demo site (2) : Heating /Cooling Systems

The building uses two separate HVAC systems:

- 2 Exterior Variable Refrigerant Flow (VRF) units and 14 floor mounted fan-coil units (FCU) → 25 kW maximum electrical load
- Air Handling Unit (AHU) and a closed-loop air/water Heat Pump (HP). → 32
 kW maximum electrical load

τεε

The demo site (4): Renewable Energy Plants

→ 624 photovoltaic (PV) thin-film CIGS panels (total panel area 475 m², total installed power 46.8 kW)

6 wind turbines (downwind technology, blade diameter 5.5 m, total installed power 36 kW)

54 photovoltaic (PV) monocrystalline cell
 technology (total panel area 250 m², total installed power 15.1kW)

The demo site (3) : Monitoring system

		С	veral	Sta	tus						
					Dashboards			fos Temperature	Lavrion Temperature		
Laboratory Of Metallurgy National Technical University Of Athens				LabMet - Mon	LabMet - Monitoring Home 🏠				- 2		
				Lavrion Admir	Lavrion Admin Building						
					Lavrion H2 Temperatures						
					Lavrion H2SusBuild			4.3 °C	25.8 °C		
Zografos Data Age		H2SUSBUILD Data Age				Admin Data Age					
Weather Station	DataLogger	Lavrion Davis Weather Station	VRV	AL	ALMEMO			Fan Coils	Chiller Flow		
10 min	5 min	1 min	0 min	0	min	0 min	() min	0 min		
Inverters		Galtech EnOcean		AHU Flow		Burner Flow					
0 min		0 min 0 min		0	0 min 0 i						
Lavion Wadler Forcast											
		Temperature		Humidity	Weather Description						
2019-09-20 12:00:00	2019-09-20 15:00:00				scattered clouds	33	.00 9.4				
2019-09-20 15:00:00	2019-09-20 18:00:00				light rain						
2019-09-20 18:00:00	2019-09-20 21:00:00				few clouds						
					scattered clouds			85 m/s			
2019-09-21 00:00:00					broken clouds						
2019-09-21 03:00:00	2019-09-21 06:00:00				scattered clouds						
	2019-09-21 09:00:00				clear sky						

Weather data

Building Energy Consumption

τεε

Note: The system is continuously connected to the grid in order to ensure the uninterruptible electrical supply of the infrastructure .

RES availability (1)

The availability of excess renewable energy to be stored is assessed.

Energy production of the RES in relation to energy consumption of the building

During daylight, energy production exceeds building's demand

Surplus energy available to be stored to the thermal mass of the building

RES availability (2)

- Considering the heating period, the RES production was unable to fully cover building's demands.
- Exclusively, March presented surplus energy 1,19MWh.

Analysis of the Results

Results lead to two major observations:

- **BRC** factor is increased accordingly to **HDD**
- **Fitting curve** indicates the **impact** of climate conditions on building's performance

The gradient of the curve expresses the thermal mass capability:

- As the gradient of the curve approaches zero, the impact of the HDD approaches zero
- The higher the BRC is, the greater potential for thermal mass exploitation.

Results of the regression analysis with a confidence level of **95%**

Conclusion (1)

By exploiting thermal mass, the buildings can moderate the discrepancy of supply and demand.

Thermal mass allows the utilization of DSF at residential buildings and will increase the penetration of RES in the total energy consumption mix.

The quantification of the available thermal mass is proved complex and expensive.

Conclusion(2)

This approach provides the following **competitive advantages**:

- Minimum set of parameters and sensor infrastructure
- Variable measuring equipment without affecting the accuracy
- Interrupted / inconsistent data without affecting the results

The **outcomes** lead to **empirically rate** building capability to store energy to its thermal mass.

An empirical methodology for rating building thermal mass as energy storage system

Chrysa Politi

Email: chrysapol@metal.ntua.gr

This research has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n°731211, project SABINA.