

GELCLAD: Development of a Novel Façade Panel with Nano-insulation Properties for Energy Efficient Buildings

"ENERGY in BUILDINGS 2017"

International Conference

Athens, 21st October 2017

Jorge Corker GELCLAD Project Coordinator Instituto Pedro Nunes, Coimbra, Portugal

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723425

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

GELCLAD HIGHLY EFFICIENT CLADDING ECO-PANELS WITH **IMPROVED NANO-INSULATION PROPERTIES**

Duration

3 years

Sept 2016 - Aug 2019

Funding Programme

European Union's Horizon 2020 research and innovation programme

Grant Agreement

723425

Nanotechnologies, Advanced Materials, Biotechnology and Advanced

Manufacturing and Processing

Topic EEB 01-2016: Highly efficient insulation materials with

improved properties

Why GELCLAD?

Conventional external insulation and building façade systems still impose some technical, economic and environmental issues:

- ✓ Too much dependent on traditional and inefficient insulation materials and upon heavily virgin embodied energy materials driven from non-renewable resources
- \checkmark Short service life (15 years), mostly requiring a high level of maintenance
- ✓ Based on hard labour and time consuming multi-material layers application
- ✓ Costly and skilled personnel required for application and maintenance
- ✓ State of the art nano-insulation materials (e.g. aerogels, VIPs) still largely unaffordable and imposing huge technical restrictions during installation/service.

These are just some factors that still hinder a large scale implementation of high performance external insulation systems, as a tool for a large sustainable and highly energy efficient renovation programme of urban areas.

GELCLAD Product Concept

GELCLAD project aims to generate a novel advanced cladding system for building envelopes. Specially designed for retrofit activities and targeting the major EU building renovation action in progress, GELCLAD[™] system panels will combine an outer protective weatherproofing composite skin layer and a nano superinsulation aerogel core, all in one and ready-to-use, sustainable and durable eco-panel composite solution, able to attain high energy efficiency goals. With the advantage of being a modular external insulation system that can be considerable thin and light, GELCLAD easy to handle **unit** will allow for a much simple and swift installation, when compared with conventional façade solutions, thus aiming to be recognised as a cost-effective tool for building's energy efficiency.

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

©GELCLAD

	D
L	

GELCLAD Prototype Panel

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

GELCLAD Main objectives and results

Main Objectives

High thermal	Expected results and progress k	
performance	Rigid board-like aerogel solution e	
Availa bility at acceptable costs	Cut current aerogel foam cost in al Competitive with conventional faça	
Extended service life	30 years + with less maintenance (moisture resistance, vapor permea	
Easy Installation	Modular lightweight panel system No specialized tools / training (cut	
Sustaina bility focus	More eco-friendly aerogel product Use of organic fibers, bio-plastics a	
	Multifunctional panel solution mad	
Industrial	Excel production levels and cut ma	
innovation		

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

beyond the state of the art

xceeding the performance of traditional insulation materials by 45%

bout 1/3 ade systems (e.g. ventilated façades, ETICS)

ability, dimensional stability, UV resistance, mould attack, etc.)

ready for fast installation labor costs by 65%)

tion technologies and recycled polymers

de by co-extrusion/injection production technology anufacturing costs

	_
	n
L	Ľ

GELCLAD Main features

GELCLAD façade panel product

- 1. Inner, rigid and non-dusty high-performance aerogel core
- 2. Outer wood polymer composite (ecoWPC) protective skin frame with different optional and functional surface layers

GELCLAD integrated production system

Hybrid co-extrusion and/or injection technology

Complementary features

Smart automatic air flow cavity ventilation system using SMM

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

©GELCLAD

GELCLAD ecoWPC SKIN LAYER

Environmental friendly engineered bio and recycled wood-polymer composite (ecoWPC)

Largely made of low-embodied energy and reduced carbon footprint bio-resins and recycled polymers, mixed with renewable and affordable fillers (e.g. hardwood wastes) and bespoke additives - fiber contents up to 80% (reduced oil-based content).

Superior performance, great aesthetics and swift installation

Modern WPC cladding solution for exterior walls with improved mechanical properties and the ability to protect the thermal insulation provided by the nanotechnology-driven aerogel core. Possible to be enhanced by an outer hydrophobic and weather/UV thin co-extruded and resistant layer, for maximum performance, durability and aesthetic advantages, including many different colours.

Market opportunity for GELCLAD

WPC are still a niche application for façade applications (mostly used for porches, decks, sidings, railings, etc.).

GELCLAD ecoWPC SKIN LAYER ***

✤Base materials

- Up to 100% bio-based and renewable thermoplastics (e.g. PLA), and lignin-based resins along with organic additives
- Recycled polymers
- Blends of the previous
- Natural reinforcing fibres (wood flour) and special fillers.

*Additives

- Coupling agents
- Flame retardants
- UV inhibitors and stabilisers
- Anti-fungus, pigments and colourants
- Processing additives, plasticisers and lubricants
- Surface agents, etc.

Compounding and extrusion technology

- Producing GELCLAD ecoWPC compound blends and granules
- Pilot development/adaptation of GELCLAD ecoWPC extrusion line
- Evaluating a co-extrusion ecoWPC tool for functional surface layer

Mechanical properties evaluation

Fibres embedded into polymer matrix, strong interface between the polymer and fibre

WPC compound samples

Interfacial polymer-fiber bonding mechanisms

LONDON

Lab scale extruder

GELCLAD ecoWPC SKIN LAYER

Extruded ecoWPC material benchmark - Preliminary evaluation

Physical Properties	WPC/PE -market	WPC/PP -market	WPC/PVC -market	COMPI	COMP2	COMP3
Density	1,1 g/cc	1,1 g/cc	1.2 g/cc	0.960 g/cc	1,03 g/cc	1,10 g/cc
Moisture Absorption Equil.	1,1%	1,1%	1.2 %	1.8%	1,8%	1,4%
Viscosity			1.73 cP			
Linear Mold Shrinkage	1,1%	1,1%	0,9%	0,9%	0.8%	0,7%
ASTM Color			24.5	1		
Mechanical Properties				1		
Hardness, Shore D	60	65	70	70	76	80
Tensile Strength, Ultimate	13MPa	18 MPa	15 MPa	10 MPa	10 MPa	8 MPa
Tensile Strength, Yield	16 MPa	21 MPa	18MPa	14 MPa	14 MPa	12 MPa
Elongation at Break	4%	4%	3%	2%	2%	2%
Modulus of Elasticity	1,20 GPa	3,5 GPa	2.84 GPa	3,2 GPa	3,5 GPa	4 GPa
Flexural Yield Strength	25 MPa	32 MPa	81.0 MPa	32 MPa	34 MPa	42 MPa
Flexural Modulus	1,20 GPa	3,5 GPa	2.84 GPa	3,2 GPa	3,5 GPa	4 GPa
Izod Impact, Notched			3.51 J/cm			
Izod Impact, Unnotched	1.28 J/cm	1.28 J/cm	2.28 J/cm			
Charpy Impact Unnotched	6 kJ/m²	12 kJ/m ²	5 kJ/m²			
Charpy Impact, Notched	3 kJ/m²	3 kJ/m²	2,5 kJ/m ²			
Compression Set	25 %	28 %	30 %			
Electrical Properties						
Electrical Resistivity	3e+9 ohm-cm	3e+9 ohm-cm	3e+9 ohm-cm			3e+9 ohm-cm
Dielectric Constant	2,8	2,8	2,2			
Dielectric Strength	4,8	4,9	2,5.0 kV/mm			
Thermal Properties						
CTE, linear	65 µm/m-°C	60 µm/m-°C	55 µm/m-°C	56 µm/m-°C	56 µm/m-°C	52µm/m-°C
Thermal Conductivity	0.18 W/(m K)	0.16 W/m-K	0.18 W/m-K	0.16 W/m-K	0.16 W/m-K	0.18 W/m-K
Maximum Service Temperature, Air	60.0 °C	90.0 °C	70.0 °C	70.0 °C	70.0 °C	75.0 °C
Deflection Temperature at 0.46 MPa	66.0 °C	98.0 °C	76.0 °C			76.0 °C
Deflection Temperature at 1.8 MPa	70.0 °C	70.0 °C	70.0 °C			70.0 °C
Vicat Softening Point	80.0 °C	80.0 °C	80.0 °C			80.0 °C
Heat Distortion Temperature	73.5 °C	73.5 °C	73.5 °C			73.5 °C
Minimum Service Temperature, Air	-25.0 °C	-25.0 °C	-25.0 °C			
Brittleness Temperature	-30.4 °C	-30.4 °C	-30.4 °C			
Flammability, UL94	V2		5VB	VI		VO
Flame Spread	10 mm /min	10 mm /min	6.26 mm/min	6 mm/min	0	0
Oxygen Index LOI	20%	20%	26 %			
Optical Properties						
Transmission, mat, rough	mat, rough	mat, rough	mat, rough	mat, rough	mat, rough	mat, rough
Processing Properties	-	-			-	
Melt Temperature	160 °C	200	181 °C	182 °C	186 °C	188 °C
Flowability	high	high	sufficient	sufficient	sufficient	sufficient
not mesured						

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

ecoWPC fire performance

still under development

Samples to be preliminary tested following BS 476-7: Fire test on building materials and structures

GELCLAD ecoWPC SKIN LAYER

Extruded ecoWPC evaluation reference parameters and base requirements

	Para	meters	Requirements	Test method	Expected average results for WPC
S		Linear mass	Individual values \geq 95%, linear mass and tolerances should be declared	EN 15534-1: 2014, 6.5	0.3559 g/mm
sical eristic	Thickne	ss, width and length	The relevant dimensional values and their tolerances should be declared	EN 15534-1: 2014, 6.6.2	
Phys Pharact	Deviatio	on from straightness	The deviation of straightness and its tolerance should be declared	EN 15534-1: 2014, 6.6.3	0.35 mm
		Cupping	The cupping value and its tolerance should be declared	EN 15534-1: 2014, 6.6.4	
	Falling m	ass impact resistance	Non-cellular material profiles-No more than 1 test specimen out of 10 test specimens shall show a failure.	EN 15534-1: 2014, 7.1.2.2.1 (EN 477:1995)	Pass (0.03 mm)
			Cellular material profiles- No more than 1 test specimen out of 10 test specimen shall show a failure.	EN 15534-1: 2014, 7.1.2.2.2	
	Ter	nsile properties	MOR (MPa) MOE (GPa)	EN 15534-1: 2014, 7.2 (EN ISO 527-2)	MOR =13.45 MPa N/A
	Flex	ural properties	Deflection under a load of 250 N \leq 5.0 mm (arithmetic mean value). MOR (Bending strength - MPa) MOE (GPa)	EN 15534-1: 2014, Annex A (EN 310:1993)	3.15 mm 37.47 MPa 3.09 GPa
	Durability of products against biological agents	Resistance against basidiomycetes	The test result should be declared	EN 15534-1: 2014, 8.5.2 (ENV 12038)	
inical eristics	Resistance to artificial weathering	<i>DL*, Da*, Db</i> * should be declared Appearance criteria, as defined by the manufacturer	EN 15534-1: 2014, 8.1 (EN ISO 4892-2:2013) (EN 927-6) (EN 16472)		
Mecha charact	Dunch little of another to	Moisture resistance under cyclic test conditions	Deflection under a load of 250 N \leq 6.0 mm (arithmetic mean value).	EN 15534-1: 2014, Annex A (EN 321:2001)	N/A
	against ageing and moisture	Swelling and water absorption	 Mean value of swelling: ≤ 10 % in thickness; ≤ 1.5 % in width; ≤ 0.6 % in length; Individual values of swelling: ≤ 12 % in thickness; ≤ 2 % in width; ≤ 1.2 % in length Mean value of water absorption ≤ 8 % in weight. Individual values of water absorption ≤ 10 % in weight. 	EN 15534-1: 2014, 8.3.1 (EN 317)	Pass T = 10.26% W = 0.16% L = 1.12% Pass Weight = 0.8%
		Boiling test	 Mean value of water absorption ≤ 7 % in weight. Individual values of water absorption ≤ 9 % in weight. 	EN 15534-1: 2014, 8.3.3	Fail Weight = 9.8%
	Linear thermal expansion coefficient		≤ 50 x 10 ⁻⁶ K ⁻¹	EN 15534-1: 2014, 9.2 (ISO 11359-2)	
	Resistan	ce to natural ageing	The decrease of bending strength should be declared <i>DL*, Da*, Db*, DE*</i> or grey scale rating should be declared The change of the modulus of elasticity in bending should be declared The appearance criteria, and the location of exposure and conditions should be declared	EN 15534-1: 2014,8.2 (EN ISO 877-2) (EN 927-3)	$L_0 = 39.17$ $a_0 = 9.37$ $b_0 = 15.55$

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

	_
	n
L	Ľ

Aerogel advantages and drawbacks in building applications

Aerogels are synthetic nanostructured networks of nano silica particles made by sol-gel processes, followed by a supercritical/ambient drying stage, capable of having low density (air/voids 95-99%), outstanding thermal conductivities (as low as 13 mW/mK) and superior hydrophobicity and fire resistance performances.

However, aerogels still have limited application in the construction sector:

- highly expensive
- poor mechanical properties (brittle, dusty and fragile).

GELCLAD aerogel paste alternative

Active Aerogels has been developing pasty-like aerogel solutions, combining aerogel powders/granules with a special proprietary binder formulation, capable of being injected/extruded/moulded/sprayed to form rigid and complex geometries. When dried/cured, this pasty product can have excellent thermal insulation, very low densities and high hydrophobicity ranks, while being mechanically robust and presenting less dust release than traditional aerogel powders - all important features for GELCLAD. This aerogel material is produced by a synthesis/drying process at ambient pressure, avoiding highly energy and cost consuming supercritical methods.

Starting stage – Initial aerogel physical properties and insulation performance

Commercial Aerogel Granules

Commercial Aerogel Paste

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

Properties	Value
Apparent density (kg m ⁻³)	139
Thermal conductivity (λ_{10} mW m ⁻¹ K ⁻¹) EN12667:2001	23,0
Specific surface area $(m^2 g^{-1})$	559

Current Project Status – Present aerogel physical properties and insulation performance

Aerogel production strategy - Ambient Pressure Drying

Supercritical Fluids Drying (SFD) involve complex and costly processes, which hinders a large scale production and inhibits the wide exploitation potential of silica aerogels. The use of much more advantageous surface modification of silica elements with alkyl groups, followed by the gel's APD, makes the manufacturing of silica aerogel more simple and affordable.

AA superinsulation aerogel granules developed for GELCLAD

GELCLAD objective Aerogel $\lambda \sim 20$ mW m⁻¹ K⁻¹

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

Properties	Value
Apparent density (kg m ⁻³)	70-90
Thermal conductivity (λ_{10} mW m ⁻¹ K ⁻¹) EN12667:2001	~ 17

	_
	n
L	Ľ

Starting stage – Aerogel rigid board mechanical performance

Mechanical properties	Value
Compression behaviour σ_{10}	130 kPa EPS&PU 60-100 XPS 200-300 kPa
EIN 820	E = 1 445 kPa
Bending behaviour σ _b EN 12089	203 kPa
	$[L1 5 150 O_b > 200 KI a]$
Cohesion σ _{mt} EN 1607	45 kPa EPS&PUR > 50 XPS > 100 kPa
Adhesion to WPC σ _{mt} EN 1607	47 kPa
@activeaerogels	LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

Flexural strength tests

©GELCLA

Compressive Young's Modulus evaluation

Cohesive strength tests

Flexural strength evaluation

Compressive strength tests

Starting stage – Aerogel rigid board hygrothermal properties

Hygrothermal properties	Value
water absorption by partial immersion (W _p) EN 1609	1 hour partial immersion - W 1 day partial immersion - W 7 days partial immersion - W EPS: < 0.5 kg/m ² XPS: < 0.5 kg/m ² P
water vapour transmission properties (µ) EN 12086	$\mu = 25-30 - dry \ cup \ (0-50\% R)$ $\mu = 4-5 - wet \ cup \ (0~99\%)$ EPS: $\mu \sim 20-70$ XPS: $\mu \sim 50-30$

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

 $Vp = 0.10 \text{ kg/m}^2$

 $p = 0.19 \text{ kg/m}^2$

 $Vp = 0.28 \text{ kg/m}^2$

 $PUR = < 0.5 - 1 \text{ kg/m}^2$

RH; 23 °C) 5 RH; 23 °C)

 $PUR = \mu \sim 60$

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

water vapour transmission **tests**

water absorption tests

Hygroscopic sorption isothermal curve EN 12751

Starting stage – Aerogel rigid board indicative fire performance

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

No ignition/flame spread No smouldering combustion

EPS: class E/F | XPS: class E/F | PUR/PIR = class E/F/D

V0

Preliminary fire performance tests small flame - 30 s attack– edge and surface

	_
	n
L	Ľ

Current Project Status – Aerogel paste RTD processability tests

AA aerogel paste

AA aerogel extruded samples

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

AA aerogel material extrusion tests

Dried AA aerogel paste on a WPC

GELCLAD Installation

GELCLAD Features

- · Fast and easy installation with standard fixing elements and tools
- · Vertical installation easily connectable panels, fastening to the wall with adhesive mortars/anchoring or Al fixings
- Easy to handle and cut on-site
- Corner finishing possibilities
- · Possible to assembly to lintels, jambs and window sills
- · UV resistant and weatherproof
- · Maintenance friendly no painting, protection or special aftercare after installation
- · Stylish exterior wall cladding with different aesthetics and colours possible.

Marko Kramar arhitek

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

GarcíaRa

GELCLAD Environmental and Economic Analysis

Interaction of performance requirements:

- . Thermal
- · Fire
- · Structural
- Durability
- · LCA/ environmental
- · Costs
- Energy

Cross-disciplinary decision making and optimisation matrix

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

LCA decision making matrix example

20

GELCLAD Environmental and Economic Analysis

GELCLAD evaluation procedure

- Using SimaPro (and similar) to collect, model and analyse LCA data \bullet
- **NOTE:** multidisciplinary aspects are being mapped- not just LCA \bullet
- \bullet
- Complete life cycle inventory, including processes, product stages \bullet
- Assemble database information.

Defining goal/ scope of Gelclad function, including inputs relate to performance expectation and also relative to established systems.

	_
	n
L	Ľ

GELCLAD Energy efficiency simulations

Refurbishment of typical old dwelling multi-storey building **Building data**

- Treated floor area 640 m²
- External wall area 402 m² \bullet
- Window area South 59 m², North 57 m², East and West 6,5 m² \bullet

Assessment of heating and cooling demands for three different climates

- Porto, Portugal (Warm) -
- Ljubljana, Slovenia (Cold-temperate) -
- Stockholm, Sweden (Cold) -

Heating and cooling demands calculated for existing and refurbished building with each different type of façade lining

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

Comparison between two types of façade refurbishment

- GELCLAD panel
- Ventilated façade with mineral wool -

Marko Kramar arhitekt

GELCLAD Energy efficiency simulations

Input data and calculation assumptions

- Refurbishment of buildings following to meet NZEB standard
- All non- transparent building assemblies on building envelope were thermally insulated (e.g. roof, floor, façade)
- U-value $< 0.8 \text{ W/m}^2\text{K}$ for windows was taken into account
- Thermal bridges calculated according to EN ISO 10211 with help of HEAT2 software for window installation and for Al fixings through insulation for each façade lining. Other thermal bridges (external wall-basement, internal wallground, extension wall-roof, external wall-ceiling) also assessed and the same value taken in all variants.
- For simulation purposes it was only varied the type of façade and thickness of façade insulation
- Thicknesses of thermal insulation for each façade lining selected according similar end thermal performance or similar end thickness of lining
- Internal air temperature set points were 20°C in winter and 25°C in summer time

Thermal conductivities:

- GELCLAD Aerogel $\lambda = 20 \text{ mW m}^{-1} \text{ K}^{-1}$
- $\lambda = 36 \text{ mW m}^{-1} \text{ K}^{-1}$ Mineral wool

Calculation software

- .

- PHPP9 (Passive House Planning Package) (Passivhaus Institute, Germany)
- Heat 2 (Blocon, Sweden) according to EN ISO 10211 _

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

53 IPN **GELCLA**

Al fixing ($\lambda = 0.05$ W/mK) representing a high thermal bridge

Data for a 15 cm thick MW Ventilated Façade

Building assembly		Average U-value [W/(m ² K)]	Radiation-gains heating season [kWh/a] 7 Months	Radiation-load cooling period [kWh/a] 5 Months	Fraction of transmission heat losses
North windows	56,7 m^2	0,99	1822	1968	16,7%
East windows	6,48 m ²	1,05	387	453	2,0%
South windows	58,83 m ²	0,99	7520	4358	17,3%
West windows	6,48 m ²	1,05	425	446	2,0%
External wall - Ambient	$402,11 \text{ m}^2$	0,22	211	646	26,1%
Roof/Ceiling - Ambient	229,6 m ²	0,16	12	522	11,2%
Floor slab <i>I</i> Basement ceiling	229,6 m ²	0,25			7,1%
Thermal bridges Ambient	345,044 m				17,0%

Note:: Al bracket thermal bridge contributes around 11% to the 17% of fraction of transmission heat losses.

LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL

	D
_	

GELCLAD Energy efficiency simulations

Preliminary results

Location	Climate	building characteristic	Unrefurbished
	Cold-temperate	Heating demand kWh/(m ² a)	258,2
LJUBLJANA		Heating load W/m ²	104,4
		Cooling & dehum. demand kWh/(m ² a)	4,5
		Cooling load W/m ²	21,5
STOCHOLM	Cold	Heating demand kWh/(m ² a)	341,3
		Heating load W/m ²	123,6
		Cooling & dehum. demand $kWh/(m^2a)$	2,9
		Cooling load W/m ²	19,2
PORTO	Warm	Heating demand kWh/(m ² a)	83,4
		Heating load W/m ²	44,7
		Cooling & dehum. demand $kWh/(m^2a)$	8,8
		Cooling load W/m ²	15,6

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

Location	Climate	building		Façade insulation		
		characteristic	GELCLAD	Ventilated	l Façade	
			Aerogel 80 mm	MW 75 mm	MW 150 mm	
	Cold tomporato	Heating demand kWh/(m ² a)	15,6	29 ,1	20,3	
LJUDLJANA	Cold-temperate	Heating load W/m ²	13,5	19,0	15,4	
		Cooling & dehum. Demand kWh/(m ² a)	1,1	1,0	1,0	
		Cooling load W/m ²	6,3	6,8	6,3	
STOCHOLM			Aerogel	MW	MW	
			80 mm	75 mm	150 mm	
	Cold	Heating demand kWh/(m²a)	23 ,7	41 ,8	30,2	
		Heating load W/m ²	16,1	22,2	18,3	
		Cooling & dehum. Demand kWh/(m ² a)				
		Cooling load W/m ²				
PORTO			Aerogel	MW		
			30 mm	50 mm		
	Warm	Heating demand kWh/(m ² a)	1,8	3,8		
		Heating load W/m ²	5,8	7,3		
		Cooling & dehum. Demand kWh/(m ² a)	1,7	1,5		
		Cooling load W/m ²	5,4	5,4		

Note;: A GELCLAD system using Al bracket fixings in a cold climate can represent a heating demand around 29 kWh/m² and a heating load of 18 W/m^2 .

	_
	n
L	Ľ

GELCLAD Road to Market

End-users requirements...

- Available and affordable (ideally lowering the range of 120-70 \in/m^2 to 70-40 \in/m^2)
- · Provide superior thermal insulation performances at reduced thickness (aerogel lambda $\leq 20 \text{ mW m}^{-1} \text{ K}^{-1}$)
- · Support sustainability and **eco-friendly** principles
- · Capable of having a modular/high replication potential (new and retrofit building systems)
- · Fulfil and secure fire and mechanical performance standards
- · Deliver swift and non-complicated installation
- · Provide extended service life with minimum maintenance requirements
- · Offer modern aesthetics.

GELCLAD Road to Market

Draft plan for commercialization has been established aiming at maximising GELCLAD market penetration

- Main raw material suppliers: ACTIVE AEROGELS (PT) and TECNARO (GE)
- Western, Central and Northern Europe production/distribution: VANNPLASTIC (UK)
- Eastern Europe production/distribution: NAVODNIK (SL)
- Primary end-users: JUB d.o.o (SL), SGG affiliates (SL) and GARCIA RAMA (ES)

	_
	n
L	Ľ

GELCLAD Nanosafety cooperation

Case study for the identification of potential nanoparticle sources of emissions and exposure levels

Objectives

- Identification of potential sources of emissions
- Assess workers exposure levels to process particles
- · Physico-chemical characterisation of collected particles
- Estimate process particles emission rates and potential background contribution
- Use the work environment and far field concentrations to test exposure assessment models.

Calibrate project - NRCWE

DET NATIONALE FORSKNINGSCENTER FOR ARBEJDSMILJØ

http://www.nanocalibrate.eu/home

GELCLAD Nanosafety cooperation

Case study for the identification of potential nanoparticle sources of emissions and exposure levels

Activities made:

· May 2017: Nanoparticle measurements during aerogel manufacturing, Coimbra, Portugal **Activities planned:**

- During 2018: large scale testing of GELCLAD product
- During 2019: installation of GELCLAD product in real buildings façades.

Calibrate project - NRCWE

DET NATIONALE FORSKNINGSCENTER FOR ARBEIDSMILJØ

GELCLAD Find us next at...

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

	_
	n
L	Ľ

Thank You!

HIGHLY EFFICIENT CLADDING ECO-PANELS WITH IMPROVED NANO-INSULATION PROPERTIES

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723425

WWW.GELCLAD.EU

FACEBOOK.COM/GELCLAD

TWITTER.COM/GELCLADH2020

"ENERGY in BUILDINGS 2017" | Athens, 21-10-17 | Jorge Corker

Jorge Corker Project Coordinator

IPN - Instituto Pedro Nunes +351 239 700 968 jcorker@ipn.pt skype: corker_ipn